Fundamental papers
Other Languages:
Resource category:
- Books and online lectures
- Fundamental papers
- Recent papers
- Scientists webpages
- Blogs
- Resource websites
Physics
Classical Physics
- Archimedes, “The Works of Archimedes“, (ca. 250 BC), translation by Thomas Heath, Dover Publications (2002). [First mathematical physicist on record]
- G. Galilei, “Discorsi e dimostrazioni matematiche intorno a due nuove scienze” (”Discourses and Mathematical Demonstrations Relating to Two New Sciences“), Leiden, Louis Elsevier (1638). [Mechanics, kinematics, theory of inertia]
- I. Newton, “Philosophiae Naturalis Principia Mathematica” (”Mathematical Principles of Natural Philosophy“) (1687). [Newton’s laws of motion]
- J.C. Maxwell, “A Dynamical Theory of the Electromagnetic Field”, Philosophical Transactions of the Royal Society of London 155, 459-512 (1865). Cfr. “Treatise on Electricity and Magnetism“, Dover Publications (1954) [Theory of electromagnetism]
- E. Noether, “Invariante Variationsprobleme” (”Invariant variation problems“), Nachr. v. d. Ges. d. Wiss. zu Göttingen, 235-257 (1918). [Noether theorem]
Relativity
- A. Einstein, “Zur Elektrodynamik bewegter Körper” (”On the Electrodynamics of Moving Bodies“), Annalen Der Physik (June 30, 1905). [Theory of special relativity]
- A. Einstein, “”Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?” (”Does the Inertia of a Body Depend Upon Its Energy Content?“), Annalen Der Physik (September 27, 1905). [Derivation of the e=mc2 mass/energy equivalence].
- A. Einstein, “Die Grundlage der allgemeinen Relativitätstheorie” (”The Foundation of the General Theory of Relativity“), Annalen Der Physik, 49 (1916). [Theory of general relativity]
- K. Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie” (”On the gravitational field of a mass point according to Einstein’s theory“, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl. 189-196 (1916). [Schwarzschild metric]
- R. P. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics“, Physical Review Letters, 11, 237–238 (1963). [Kerr metric]
Cosmology
- A. Friedmann, “Uber die Krümmung des Raumes” (”On Space Curvature”), Zeitschrift fur Physik, 10, 377-387 (1922). [Friedmann Cosmology]
- E. Hubble, “A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae“, Proceedings of the National Academy of Sciences, 15, 168-173 (1929). [Hubble’s law]
- S. Chandrasekhar, “The highly collapsed configurations of a stellar mass“, Monthly Notices of the Royal Astronomical Society, 95, 207-225 (1935). [Chandrasekhar Limit]
- R. A. Alpher, G. Gamow, “The Origin of Chemical Elements“, Physical Review, 73, 803 (1948). [Theory of big-bang nucleosynthesis]
- A. Guth, “Inflationary universe: A possible solution to the horizon and flatness problems“, Physical Review D (Particles and Fields), 23:2, 347-356 (1981). [Theory of inflation]
- A. D. Linde, “A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems“, Physics Letters B, 108:6, 389-393 (1982). [”New” theory of inflation]
Quantum Physics
- M. Planck, “Über das Gesetz der Energieverteilung im Normalspektrum” (”On the Law of Distribution of Energy in the Normal Spectrum“), Annalen Der Physik, 4, 553 (1901). [Quantum hypothesis, law of black body radiation]
- A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” (”On a Heuristic Viewpoint Concerning the Production and Transformation of Light“), Annalen Der Physik, 1905. [Quantum of light, explanation of the photoelectric effect]
- N. Bohr, “On the Quantum Theory of Line-Spectra“, D. KGL. Danske Vidensk. Selsk. Skrifter, naturvidensk. og mathem. Afd. 8. Raekke, IV.1, 1-3 1 (1918). [Correspondence principle]
- L. de Broglie, “Ondes et Quanta” (”Waves and Quanta“), Compt. Ren. 177:507 (1923). [Wave-particle duality]
- S. N. Bose, “Plancks Gesetz und Lichtquantenhypothese” (”Plancks Law and Light Quantum Hypothesis“), Z. Phys, 26, 178 (1924). A. Einstein, “Quantentheorie des einatomigen idealen Gases“, Sitzungsber. Kgl. Preuss. Akad. Wiss., 261 (1924), 3 (1925). [Bose-Einstein statistics, prediction of Bose-Einstein condensate]
- W. Pauli, “Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren” (”On the Connexion between the Completion of Electron Groups in an Atom with the Complex Structure of Spectra“), Z. Phys. 31:765 (1925). [Pauli exclusion principle]
- W. Heisenberg, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen” (”Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations”), Z. Phys. 33:879 (1925). [Theoretical foundation of quantum mechanics, “Heisenberg picture”]
- M. Born, P. Jordan, “Zur Quantenmechanik” (”On Quantum Mechanics“), Z. Phys. 34:858 (1925). [Matrix formalism]
- E. Fermi, “Zur Quantelung des Idealen Einatomigen Gases” (”On Quantization of Perfect Monatomic Gases“), Z. Phys. 36, 902 (1926). P.A.M. Dirac, “On the Theory of Quantum Mechanics“, Proc. Roy. Soc. A112, 661 (1926). [Fermi-Dirac statistics]
- E. Schrödinger, “Quantizierung als Eigenwertproblem (Erste Mitteilung)” (”Quantization as a Problem of Proper Values. Part I.”), Annalen der Physik., 79:361 (1926). [Schrödinger equation]
- E. Schrödinger, “Über das Verhältnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen” (”On the Relation Between the Quantum Mechanics of Heisenberg, Born, and Jordan, and that of Schrödinger”), Annalen der Physik. 79:734 (1926). [Equivalence of Heisenberg and Schrödinger formulations of quantum mechanics]
- M. Born, “Zur Quantenmechanik der Stoßvorgänge” (”Quantum Mechanics of Collision”), Z. Phys. 37:863 (1926). [Statistical interpretation, probability density]
- W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik” (”The Actual Content of Quantum Theoretical Kinematics and Mechanics“), Z. Phys. 43:172 (1927). [Uncertainty principle]
- A. Einstein, B. Podolsky, N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?“, Phys. Rev. 47, 777–780 (May 15, 1935). [EPR paradox]
- R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics“, Rev. of Mod. Phys. 20:367 (1948). [Path integral formalism]
- H. Everett, “Relative state formulation of quantum mechanics“, Rev. Mod. Phys. 29, 454-462 (1957). [”Many worlds” interpretation]
- Bell, J. S., “On the Einstein-Podolsky-Rosen paradox“, Physics 1, 195–200 (1964). [Bell theorem]
- H. D. Zeh, “On the interpretation of measurement in quantum theory“, Found. Phys. 1, 69-76 (1970). [Decoherence]
- W. K. Wootters, W. H. Zurek, “A single quantum cannot be cloned“, Nature, 299, 802-803 (1982). [No-cloning theorem]
- C. H. Bennett, G. Brassard, et al., “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels“, Phys. Rev. Lett. 70, 1895-1899 (1993). [Quantum teleportation]
Nuclear and particle physics
- E. Rutherford, “The Scattering of alpha and beta Particles by Matter and the Structure of the Atom“, Phil. Mag. 21, 669 (1911). [Evidence for atomic nuclei, Rutherford model of the atom]
- N. Bohr, “On the Constitution of Atoms and Molecules“, I. Phil. Mag. 26:1 (1913). [Bohr model of the atom]
- P. A. M. Dirac, “The Quantum Theory of Dispersion“, Proc. Roy. Soc. A114:710 (1927). [Foundations of quantum electrodynamics]
- P. A. M. Dirac, “The Quantum Theory of the Electron“, Proc. R. Soc. London A 117 610 (1928) A 118 351-361 (1928). [Relativistic quantum mechanical equation of the electron]
- H. Yukawa, “On the Interaction of Elementary Particles“, Proc. Phys. Math. Soc. Jap. 17:48 (1935). [Field theory of nuclear forces]
- R. P. Feynman, “Relativistic Cut-Off for Quantum Electrodynamics“, Phys. Rev. 74, 1430 (1948). “Space-Time Approach to Quantum Electrodynamics“, Phys. Rev. 76, 769 - 789 (1949). “Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction“, Phys. Rev. 80, 440 - 457 (1950). [Covariant theory of quantum electrodynamics]
- C. N. Yang, R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance“, Phys. Rev. 96:191 (1954). [Local gauge invariance: Yang-Mills theory]
- M. Gell-Mann, “A Schematic Model of Baryons and Mesons”, Phys. Lett. 8:214 (1964). [Quark model]
- P. W. Higgs, “Broken Symmetries and Masses of Gauge Bosons“, Phys. Rev. Lett. 13, 508 (1964). [Higgs mechanism of mass generation]
- S. Weinberg, “A model of leptons“, Phys. Rev. Lett. 19, 1264-1266 (1967). [Electroweak theory]
- G. Veneziano, “Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories”, Nuovo Cimento, 57A, 190 (1968). L. Susskind, “Dual symmetric theory of hadrons”, Nuovo Cimento, 69A, 457 (1970). [First formulation of string theory]
- G. ‘t Hooft, “Renormalization of Massless Yang-Mills Fields“, Nucl. Phys. B33:173 (1971). [Proof of renormalizability of gauge fields]
- D. J. Gross, F. Wilczek, “Ultraviolet Behaviour of Non-Abelian Gauge Theory“, Phys. Rev. Lett. 30:1343 (1973). [Asymptotic freedom]
- H. Georgi, S. L. Glashow, “Unity of All Elementary-Particle Forces“, Phys. Rev. Lett. 32, 438-441 (1974). [Grand unified theory of all forces except gravity]
Quantum gravity
- B. S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory“, Phys. Rev. 160, 1113-1148 (1967). [Wheeler-DeWitt equation]
- J. Scherk, J. H. Schwarz, “Dual models for non-hadrons“, Nucl. Phys. B81, 118 (1974). [Application of string theory to quantum gravity]. M. B. Green, J. H. Schwarz, “Supersymmetrical dual string theory“, Nuclear Physics B181, 3, 502-530 (1981). [Superstring theory]
- J. D. Bekenstein, “Black Holes and Entropy“, Phys. Rev. D 7, 2333-2346 (1973). [Black hole thermodynamics]
- S. W. Hawking, “Particle creation by black holes“, Comm. Math. Phys., 43, 3, 199-220 (1975). [Hawking radiation]
- A. Ashtekar, “New variables for classical and quantum gravity“, Phys. Rev. Lett., 57 (18), 2244-2247 (1986). [Ashtekar variables]. C. Rovelli, L. Smolin, “Loop space representation of quantum general relativity“, Nucl. Phys., B331 (1), 80-152, (1990). [Loop quantum gravity]
- G. ‘t Hooft, “Dimensional Reduction in Quantum Gravity“, arXiv:gr-qc/9310026 (1993). [Holographic principle]
- E. Witten, “String Theory Dynamics In Various Dimensions“, Nucl. Phys. B443 85-126 (1995). [M-theory]
Computation
Theory of Computability
- K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme” (”On Formally Undecidable Propositions of Principia Mathematica and Related Systems“), Monatshefte für Mathematik und Physik, 38: 173-98 (1931). [Gödel theorems for recursive axiomatic systems]
- A. Turing, “On computable numbers, with an application to the Entscheidungsproblem“, Proceedings of the London Mathematical Society, 2(42), 230-265 (November 12, 1936) [Turing machine computation model, definition of computability (Turing thesis)]
- A. Turing, “Computability and lambda-Definability“, Journal of Symbolic Logic, 2, 153-163 (December 1937). [Proof of the equivalence of Turing computable functions, Church lambda-definable functions and Gödel-Kleene general recursive functions]
- A. Turing, “Systems of logic based on ordinals”, Proceedings of the London Mathematical Society, 3(45), 161-228 (1939). [First definition of relative computability, oracle machine]
- W. S. McCulloch, W. H. Pitts, “A logical calculus of the ideas immanent in nervous activity“. Bulletin of Mathematical Biophysics, 5:115-133 (1943). [Finite state machines and neural networks]
- J. von Neumann, “On a logical and general theory of automata“, in Cerebral Mechanisms in Behavior: The Hixon Symposium, ed. L.A. Jeffries (New York: Wiley, 1951). J. von Neumann, “Theory of Self-Reproducing Automata“, (University of Illinois Press, 1966). [Automata]
- N. Chomsky, “Three Models for the Description of Language“. IRE Transactions on Information Theory. 2,3 : 113-24 (1956). “On certain formal properties of grammars”, Information and Control 2, 137-167 (1959). [Formal grammars]
- M. O. Rabin, D. Scott, “Finite automata and their decision problems“, IBM Journal of Research and Development, 3:114–125 (1959). [Nondeterministic machines]
Information Theory
- C. E. Shannon, “A mathematical theory of communication“, Bell System Technical Journal, vol. 27, 379-423 and 623-656 (July and October 1948). [Foundation of information theory]
- R. Hamming, “Error detecting and error correcting codes“, Proceedings of the Institute of Radio Engineers, 40:9, 1098–1101 (1952). [Error correction]
- R. Landauer, “Irreversibility and Heat Generation in the Computing Process“, IBM Journal of Research and Development, Vol. 5, No. 3 (1961). [Logical irreversibility is physical irreversibility]
Computational Complexity
- J. Hartmanis, R. Stearns, “On the computational complexity of algorithms”, Trans. Amer. Math. Soc. 117 (May 1965). [Foundation of computational complexity theory]
- M. Blum, “A machine-independent theory of the complexity of recursive functions“. Journal of the ACM, 14-2:322 336 (1967). [Blum complexity axioms]
- S. A. Cook, “The Complexity of Theorem Proving Procedures“, Proceedings Third Annual ACM Symposium on Theory of Computing, 151-158 (May 1971). [Concept of NP-completeness]
Algorithmic Information Theory
- R. Solomonoff, “A formal theory of Inductive Inference“, Information and Control, 7, 1-22, 224-54 (1964). [First definition of algorithmic complexity]
- A. N. Kolmogorov, “Three approaches to the quantitative definition of information”, Problems in Information Transmission, 1:1, 1-7, (1965). [Kolmogorov complexity]
- G. J. Chaitin, “On the length of programs for computing finite binary sequences: statistical considerations“, Journal of the ACM, 16, 145-159 (1969). [Independent formulation of Kolmogorov complexity]
Quantum Information Theory
- R. P. Feynman, “Simulating Physics with Computers“, International Journal of Theoretical Physics, 21: 467-488 (1982). [Argument for quantum computation]
- D. Deutsch, “Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer“, Proc. Roy. Soc. Lond., A400, 97–117 (1985). [Foundation of the quantum model of computation, universal quantum Turing machine]
- D. Deutsch, R. Jozsa, “Rapid Solution of Problems by Quantum Computation“, Proceedings: Mathematical and Physical Sciences, 439:1907, 553-558 (1992). [First quantum algorithm]
- C. H. Bennett and S. J. Wiesner. “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states“. Phys. Rev. Lett., 69:2881 (1992). [Superdense coding]
- P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring“, IEEE Comput. Soc. Press, 124–134 (November 1994) [Shor’s quantum factorization algorithm]
- L. K. Grover, “A fast quantum mechanical algorithm for database search“, Proceedings, 28th Annual ACM Symposium on the Theory of Computing, 212 (May 1996). [Grover’s quantum search algorithm]