Resources
Other Languages:
Resource category:
- Books and online lectures
- Fundamental papers
- Recent papers
- Scientists webpages
- Blogs
- Resource websites
Physics
General introduction
- Textbooks
- R. P. Feynman. “The Feynman Lectures on Physics: The Definitive and Extended Edition (Hardcover, 3-volumes). Addison Wesley, 2005. [Remarkable introduction to modern physics by “the great explainer” Richard Feynman]
- Video Lectures
- MIT Course 8.01 Physics I: Classical Mechanics, Fall 1999
MIT Course 8.02 Physics II: Electricity and Magnetism, Spring 2002
MIT Course 8.03 Physics III: Vibrations and Waves, Fall 2004
[Lectures by Prof. Walter Lewin at Massachusetts Institute of Technology, excellent educational value] - Online lectures
- K. Thorne, Caltech Ph136, “Applications of Classical Physics” (2006). [Broad coverage of classical topics]
Classical mechanics
- Textbooks
- D. Halliday, R. Resnick, K. Krane, “Physics Volume I“, John Wiley & Sons, 5th edition (2001) [Good introduction]
- H. Goldstein, C. P. Poole, J. L. Safko, “Classical Mechanics“, Addison Wesley, 3rd edition (2002) [The canonical textbook]
- L. D. Landau, E. M. Lifshitz, “Course of theoretical physics: Mechanics“, Butterworth-Heinemann, 3rd edition (1982) [Advanced and elegant treatment]
- Online books and lectures
- R. Fitzpatrick, Classical Mechanics (University of Texas at Austin, 2006) [Introductory course]
- H. C. Rosu, Classical Mechanics, arxiv:physics/9909035 [Graduate level]
- K. Thorne, “Applications of Classical Physics” (2005
- G. J. Sussman, J. Wisdom, “Structure and Interpretation of Classical Mechanics” (MIT Press, 2001). [Excellent advanced presentation in a computational approach]
Statistical and thermal physics
- Textbooks
- F. Reif, “Fundamentals of statistical and thermal physics“, McGraw-Hill (New York 1965). [The standard textbook]
- L. D. Landau, E. M. Lifshitz, “Statistical physics“, Butterworth-Heinemann (3rd edition, 1984). [Elegant and clear exposition]
- E. Fermi, “Thermodynamics“, Dover (1956). [Concise and clear lectures by Nobel prize Enrico Fermi]
- Online lectures
- R. Fitzpatrick, University of Texas at Austin, “Thermodynamics & Statistical Mechanics” (2006).
- A. Huan, “Statistical Mechanics“.
- D. B. Melrose, University of Sydney, “Thermodynamics Lecture Notes” (2002).
- H. Gould, “Thermal and Statistical Physics” (2006).
Electromagnetism
- Textbooks
- E. M. Purcell, “Electricity and magnetism“, McGraw-Hill (2nd edition, 1984). [Standard introductory textbook]
- D. J. Griffiths, “Introduction to electrodynamics“, Prentice-Hall (3rd edition, 1998). [Intermediate level]
- J. D. Jackson, “Classical electrodynamics“, Wiley (3rd edition, 1998). [Advanced level]
- Online lectures
- R. Fitzpatrick, University of Texas at Austin, “Classical electromagnetism” (2006)
- W. J. Spence, Queen Mary University of London, “Electromagnetic theory” (2006)
Relativity
- Textbooks
- E. F. Taylor, J. A. Wheeler, “Spacetime Physics“, W. H. Freeman (2nd edition, 1992). [Classic introduction to special relativity]
- A. P. French, “Special Relativity“, W. W. Norton & Company (1968). [Introduction to special relativity]
- W. Rindler, “Introduction to Special Relativity“, Oxford University Press (2nd ed. 1991). [Another good introduction to special relativity]
- J. B. Hartle, “Gravity: An Introduction to Einstein’s General Relativity“, Addison Wesley (2002). [Introduction to general relativity]
- B. F. Schutz, “A First Course in General Relativity“, Cambridge University Press (1985). [Very good textbook on general relativity]
- R. Wald, “General Relativity“, (University of Chicago Press, 1984). [More advanced textbook on GR]
- Online lectures
- S. M. Carroll, Lecture Notes on General Relativity (MIT 8.962, Spring 1996)
- G. ‘t Hooft, Introduction to General Relativity, Lecture Notes (Utrecht University, 2002)
Cosmology
- Textbooks
- B. Ryden, “Introduction to Cosmology“, Addison Wesley (2002). [Very good textbook covering recent topics]
- E. W. Kolb, M. S. Turner, “The Early Universe“, Perseus Books Group (1993). [Classic text on early universe cosmology]
- S. Dodelson, “Modern Cosmology“, Academic Press (2003). [More advanced textbook on cosmology]
- Online lectures
- A. R. Liddle, “Inflationary Cosmology: Theory and Phenomenology“, Class. Quant. Grav. 19, 3391-3402 (2002). A. Linde, “Particle Physics and Inflationary Cosmology“, Harwood (1990), repr. in Contemp. Concepts Phys. 5, 1-362 (2005). “Inflation and String Cosmology“, J. Phys. Conf. Ser. 24, 151-160 (2005).
- E. Bertschinger, “Cosmic Microwave Background Anisotropy“, Massachusetts Institute of Technology, Physics 8.942 (2001).
Quantum mechanics
- Textbooks
- P. A. M. Dirac, “The Principles of Quantum Mechanics” (1958) (Oxford University Press, 1982). [Fundamental text in the history of quantum mechanics]
- C. Cohen-Tannoudji, B. Diu, F. Laloe, “Quantum Mechanics (2 vol. set)” (Wiley Interscience, 2006). [Classic textbook on quantum mechanics]
- D. J. Griffiths, “Introduction to Quantum Mechanics“, (Prentice Hall, 2004) [Another classic introductory textbook]
- L. E. Ballentine, “Quantum Mechanics: A Modern Development” (World Scientific Publishing Company, 1998) [Good modern textbook]
- Online lectures
- D. Cohen, “Lecture Notes in Quantum Mechanics” (2006).
Interpretations of Quantum Mechanics
- Textbooks
- J. Bell, “Speakable and Unspeakable in Quantum Mechanics” (Cambridge University Press, 2 ed., 2004). [Collection of philosophical essays by John Bell on quantum mechanics]
- R. Omnès, “The Interpretation of Quantum Mechanics” (Princeton University Press, 1994). [Good treatment of the interpretation problem and Griffiths’ consistent histories approach]
- Online lectures
- IQC/Perimeter Institute, PHYS490/773, “Interpretations of Quantum Mechanics” (2005).
Condensed matter
- Textbooks
- N. W. Ashcroft, N. D. Mermin, “Solid State Physics“, Brooks Cole (1976). [Classic textbook]
- P. M. Chaikin, T. C. Lubensky, “Principles of Condensed Matter Physics“, Cambridge University Press (2000). [Good overview including newer topics]
- P. L. Taylor, O. Heinonen, “A Quantum Approach to Condensed Matter Physics“, Cambridge University Press (2002). [Focused on quantum treatments]
- Online lectures
- C. Nayak, University of California Physics 140a, “Solid State Physics” (2000).
- Y. M. Galperin, University of Oslo FYS 448, “Introduction to Modern Solid State Physics” (2001)
Particle physics
- Textbooks
- G. D. Coughlan, J. E. Dodd, B. M. Gripaios, “The Ideas of Particle Physics: An Introduction for Scientists“, Cambridge University Press (3rd edition, 2006). [A good place to start]
- D. Griffiths, “Introduction to Elementary Particles“, Wiley (1987). [Very good introductory textbook]
- F. Halzen, A. D. Martin, “Quarks and Leptons: An Introductory Course in Modern Particle Physics“, John Wiley & Sons (2001) [Standard textbook in high energy physics]
- Online lectures
- C.N. Booth, Sheffield University PHY304 “Particle Physics” (2005)
- N. Walet, Manchester University P615 “Particle and Nuclear Physics” (2003)
- Specialized Websites
Quantum Field Theory
- Textbooks
- L. S. Brown, “Quantum Field Theory” (Cambridge University Press, 1994). [Very good introduction, using path integral formalism. Covers QED not QCD]
- M. E. Peskin, “An Introduction to Quantum Field Theory (HarperCollins 1995) [The standard textbook]
- S. Weinberg, “The Quantum Theory of Fields” (3 vol.) (Cambridge University Press, 2005). [Advanced textbook]
- Online lectures
- F. Wilczek, “Quantum Field Theory“, Rev. Mod. Phys. 71, S85-S95, (1999). [General principles] F. Wilczek, “Future Summary“, Int. J. Mod. Phys. A16 1653-1678 (2001); Int. J. Mod. Phys. A16S1A 129-154 (2001). [Future research perspectives]
- G. ‘t Hooft, “The conceptual basis of quantum field theory“, Utrecht University (2005).
- J. L. Rosner, “The Standard Model in 2001“, arxiv:hep-ph/0108195 (2001). [Review of the standard model]
- P. van Baal, “A Course in Field Theory“, University of Leiden (1998). [Good course]
- M. Srednicki, “Quantum Field Theory“, Cambridge University Press (2007). [Preprint]
- D. E. Kharzeev, J. Raufeisen, “High Energy Nuclear Interactions and QCD: an introduction“, arxiv:nucl-th/0206073 (2002). [Introduction to Quantum Chromodynamics]
- Video lectures
- R. Feynman, “Lectures on Quantum Electrodynamics“, Auckland University (1979). [Remarkable non-technical introduction to QED]
String Theory
- Textbooks
- J. Polchinski, “String Theory“, (2 vol.) (Cambridge University Press, 1998) [Standard introduction to string theory]
- M. B. Green, J. H. Schwarz, E. Witten, “Superstring Theory” (2 vol.) (Cambridge University Press, 1988). [Reference book on string theory]
- Online lectures
- G. ‘t Hooft, “Introduction to String Theory” (Utrecht University, 2004)
- A. M. Uranga, “Graduate course in String Theory” (Universidad de Madrid, 2005)
Loop Quantum Gravity
- Textbooks
- C. Rovelli, “Quantum Gravity“, Cambridge University Press (2004). [Reference overview of LQG]
- Online lectures
- T. Thiemann, “Introduction to Modern Canonical Quantum General Relativity“, arxiv:gr-qc/0110034 (2001)
Mathematics and Computation
Elementary mathematics and general introductions
- K. Peppard, J. Puckett, West Texas University, “Beginning Algebra” (2002), “Intermediate Algebra” (2002).
- L. Spector, “TheMathPage” (2007).
- D. Joyce, Clark University, “Short Trigonometry Course“, (1996).
- T. Ward, University of East Anglia, “Basic Mathematics“.
- J. Nearing, University of Miami, Physics 315, “Mathematical Tools for Physics” (2003). [Good course ranging from the very basics up to differential equations, vectors, tensors and Fourier analysis]
Foundations of mathematics
- Mathematical logic
- S. G. Simpson, Penn State University, “Mathematical Logic” (2005)
- Model theory
- S. G. Simpson, Penn State University, Math 563, “Model theory” (1998)
- Set theory
- P. Dixon, University of Sheffield, “Set Theory” (1999).
Algebra
- Number theory
- V. Shoup, “A Computational Introduction to Number Theory and Algebra“, Cambridge University Press (2005).
- Linear algebra
- J. Hefferon, “Linear algebra” (2006).
- Group theory
- B. Ash, University of Illinois, “Abstract Algebra” (2002).
- Lie groups
- B. C. Hall, University of Virginia, “An Elementary Introduction to Groups and Representations” (2003).
- Category theory
- M. M. Fokkinga, University of Utrecht, “A Gentle Introduction to Category Theory” (1994).
Geometry
- Euclidean Geometry
- Euclid of Alexandria, “Elements” (300 B.C.)
- Topology
- T. Ward, University of East Anglia, “Topology” (2001).
- Differential geometry
- R. M. Bowen, Texas A&M University, “Vector and Tensor Analysis” (1976).
- G. Lugo, University of North Carolina, “Differential Geometry in Physics” (2006).
Analysis
- Calculus
- G. Strang, “Calculus“, Cambridge Press (1981).
- Real analysis
- E. Zakon, University of Windsor, “Mathematical Analysis I” (1975).
- Complex analysis
- G. Cain, Georgia Institute of Technology, “Complex Analysis“, (1999).
- Differential equations
- D. Sloughter, Furman University, “Difference equations to differential equations” (2006).
- M. Pivato, Trent University, “Linear Partial Differential Equations and Fourier Theory“, (2005).
- W. W. Symes, Rice University, “Partial Differential Equations of Mathematical Physics” (2006).
- C. Pope, Texas A&M University, “Methods of Theoretical Physics I, chapter 1 and chapter 2” (2006), “Methods of Theoretical Physics II“.
- Functional analysis
- T. Ward, University of East Anglia, “Functional Analysis” (2003).
- V. V. Kisil, University of Leeds, “Hilbert Spaces” (2006).
- Analysis on manifolds
- A. Connes, “Noncommutative Geometry” (1994).
Probability
- Probability and statistics
- C. M. Grinstead, J. L. Snell, “Introduction to Probability“, AMS (2003).
Theory of Computability
- Textbooks
- M. Sipser, “Introduction to the Theory of Computation“, Course Technology, 2nd edition (2005). [Excellent introductory textbook]
- G. S. Boolos, J. P. Burgess, R. C. Jeffrey, “Computability and Logic“, Cambridge University Press (4th edition, 2002). [Classic textbook, covering Gödel theorems and Turing computability]
- R. L. Epstein, W. A. Carnielli, “Computability: Computable Functions, Logic, and the Foundations of Mathematics“, Wadsworth Publishing, (2nd edition, 1999). [Good introduction to computability]
Information Theory
- Textbooks
- T. M. Cover, J. A. Thomas, “Elements of Information Theory“, Wiley-Interscience (2nd edition, 2006). [Classic textbook covering general and advanced topics]
- L. Brillouin, “Science and Information Theory“. New York: Academic Press (1962). [Discusses relations between information theory and physics]
- Online lectures
- S. Lloyd, MIT 6.050J / 2.110J “Information and Entropy” lecture notes (2003).
Computational Complexity
- Textbooks
- M. R. Garey, D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness“, W. H. Freeman (1979). [The canonical textbook on NP-completness]
- C. H. Papadimitriou, “Computational Complexity“, Addison Wesley (1993). [Clear exposition of complexity theory results]
- I. Wegener, R. Pruim, “Complexity Theory“, Springer (2005). [Good textbook with recent topics]
- Online lectures
- S. Mertens, “Computational Complexity for Physicists“, Computing in Science & Engineering, 4, 3, 31-47 (2002) [Links to quantum computing and statistical mechanics]
Algorithmic Information Theory
- Textbooks
- M. Li, P. Vitanyi, “An Introduction to Kolmogorov Complexity and Its Applications“, Springer, (2nd edition, 1997). [The main textbook on Kolmogorov complexity]
- G. J. Chaitin, “Algorithmic Information Theory“, Cambridge University Press (2004). Also available online. [Introduction to AIT]
Quantum Information Theory
- Textbooks
- M. A. Nielsen, I. L. Chuang, “Quantum Computation and Quantum Information“, Cambridge University Press (2000). [The reference textbook on quantum information]
- Online lectures
- J. Preskill, Caltech Physics 229, “Quantum information and computation“, lecture notes (1997-1998).
- A. Steane, “Quantum computing“, Rept. Prog. Phys. 61:117-173 (1998). [Good review article on quantum information theory]
- Video lectures
- D. Deutsch, “Lectures on quantum computation” (2003).