Une des expériences les plus surprenantes en physique quantique est l’expérience de la “gomme quantique” (quantum eraser), proposée par Scully et Drühl en 1982 et ensuite réalisée dans plusieurs configurations différentes.
Un principe de base de la mécanique quantique est le principe de complémentarité, selon lequel pour chaque dégré de liberté, les variables dynamiques sont une paire d’observables complémentaires. Etre complémentaire signifie que la connaissance précise de l’un implique la complète imprévisibilité de l’autre. Par exemple, la connaissance précise de la position d’une particule implique la complète imprévisibilité de sa quantité de mouvement.
Une illustration de la complémentarité est l’expérience classique de Young, où une lumière monochromatique qui illumine un écran avec deux fentes produit des figures d’interférence d’onde. Toutefois, si un dispositif est utilisé pour détecter les photons pendant qu’ils traversent chaque fente, l’interférence disparaît. Ce comportement dual non-classique (qui n’est pas spécifique aux photons, mais est commun à chaque particule, atomes et molécules) est observé même lorsqu’une seule particule à la fois traverse les fentes, suggérant qu’elle interfère avec elle-même. La connaissance du chemin des particules est complémentaire à l’apparition d’une figure d’interférence. Selon la relation de dualité d’Englert-Greenberger, D2+V2≤1 (où D est la distinguabilité des chemins de 0 à 1 et V la visibilité de la figure d’interférence de 0 à 1).
On considérait que le mécanisme général responsable de la perte de la figure d’interférence était le principe d’incertitude de Heisenberg, car toute mesure, aussi délicate qu’elle soit, introduit une perturbation dans le système qu’elle est en train de mesurer. Cependant, dans cette expérience, l’information “quel chemin” des particules est trouvée sans perturber leur fonction d’onde. La raison de la perte d’interférence est l’information quantique contenue dans le dispositif de mesure, par les corrélations d’intrication entre les particules et les détecteurs de chemin. L’expérience montre que si une telle information est postérieurement effacée du système, alors l’interférence reapparaît, ce qui serait impossible s’il s’agissait d’une perturbation.
La configuration originale de l’expérience impliquait l’utilisation de faisceaux d’atomes, d’autres versions ont employé de la lumière. Dans la configuration ici présentée, les photons d’un laser traversent une double fente et percutent un cristal de borate de baryum au point A ou B selon la fente qui a été traversée. Un tel cristal a une propriété optique particulière, à savoir que quand il absorbe un photon il re-émet du même point une paire de photons intriqués allant dans des directions opposées (droite et gauche dans la figure ci-dessous). Ceci permet la détermination du chemin d’un photon par la mesure de l’autre, et cela même après que le premier ait déjà été absorbé par un détecteur plus rapproché.
Le photon allant vers la droite est détecté par D0, qui peut balayer la direction x afin d’enregistrer la figure d’interférence. Le photon allant vers la gauche traverse un miroir semi-réfléchissant (BSA ou BSB selon le chemin initial). Un miroir semi-réfléchissant a une probabilité égale de réfleter ou de transmettre la lumière. Le photon sortant de BSA peut aller à D3 ou à un deuxième miroir semi-réfléchissant BS, et pareillement le photon sortant de BSB peut aller à D4 ou à BS. En conclusion, les photons sortant de BS vont aux détecteurs D1 ou D2.
Les détecteurs de gauche enregistrent l’information “quel-chemin” :
- Si D3 ou D4 se déclenchent, alors on sait que la paire a pris respectivement le chemin A ou B.
- Si D1 ou D2 se déclenchent, alors le chemin n’est plus connu (parce que D1 peut être déclenché aussi bien par un photon qui suit le chemin A via BSA-BS-D1, ou par un photon qui suit le chemin B par BSB-BS-D1, et c’est pareil pour D2). Le miroir semi-réflechissant BS est la “gomme à effacer” de l’information “quel-chemin”, mélangeant les deux chemins avec probabilité égale.
Le détecteur de droite enregistre la figure d’interférence :
- Quand le photon de droite est détecté par D0, le photon de gauche est toujours en mouvement sur un chemin bien déterminé. En conséquence, D0 ne montre pas d’interférence.
- L’information “quel-chemin” est ensuite effacée pour les photons détectés par D1 ou D2, et non effacée pour les photons détectés par D3 ou D4.
A ce point, il est possible de corréler l’information “quel-chemin” de ces deux groupes de photons avec le sous-ensemble correspondant de photons détectés en D0. On peut par exemple colorier en violet tous les impacts en D0 correspondants aux impacts en D3 ou D4, et l’on trouve que leur distribution n’a pas d’interférence (en accord avec le fait que l’information “quel-chemin” est connue). On peut ensuite colorier en rouge tous les impacts en D0 correspondants aux impacts en D1, et en bleu ceux correspondants aux impacts en D2, c’est à dire après l’effacement de l’information “quel-chemin”, et on trouve que leur distribution montre deux figures d’interférence, une avec franges pour D1 et une avec anti-franges pour D2, qui s’annulent lorsqu’elles sont superposées.
Au temps T0 quand D0 est déclenché aucune interférence n’apparaît, puisque l’information “quel-chemin” est contenue dans le système à ce temps. Au temps T1, qui dans l’expérience est quelque nanoseconde plus tard, mais qui pourrait en principe être tout temps futur, quand D1/D2/D3/D4 ont été déclenchés, on trouve une figure d’interférence dans les sous-ensemble correlés des enregistrement passés de D0 qui ont subi l’effacement futur de l’information “quel-chemin”.