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The recently published theoretical approach of Heisenberg is here developed

into a systematic theory of quantum mechanics (in the first place for systems hav-

ing one degree of freedom) with the aid of mathematical matrix methods. After

a brief survey of the latter, the mechanical equations of motion are derived from

a variational principle and it is shown that using Heisenberg’s quantum condition,

the principle of energy conservation and Bohr’s frequency condition follow from the

mechanical equations. Using the anharmonic oscillator as example, the question of

uniqueness of the solution and of the significance of the phases of the partial vibra-

tions is raised. The paper concludes with an attempt to incorporate electromagnetic

field laws into the new theory.

Introduction

The theoretical approach of Heisenberg 1 recently published in this Journal,
which aimed at setting up a new kinematical and mechanical formalism in
conformity with the basic requirements of quantum theory, appears to us
of considerable potential significance. It represents an attempt to render

1W.Heisenberg, Zs. f. Phys. 33 (1925) 879.
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justice to the new facts by selling up a new and really suitable conceptual
system instead of adapting the customary conceptions in a more or less ar-
tificial and forced manner. The physical reasoning which led Heisenberg
to this development has been so clearly described by him that any supple-
mentary remarks appear superfluous. But, as he himself indicates, in its
formal, mathematical aspects his approach is but in its initial stages. His
hypotheses have been applied only to simple examples without being fully
carried through to a generalized theory. Having been in an advantageous
position to familiarize ourselves with his ideas throughout their formative
stages, we now strive (since his investigations have been concluded) to clar-
ify the mathematically formal content of his approach and present some of
our results here. These indicate that it is in fact possible, starting with
the basic premises given by Heisenberg, to build up a closed mathemati-
cal theory of quantum mechanics which displays strikingly close analogies
with classical mechanics, but at the same time preserves the characteristic
features of quantum phenomena.

In this we at first confine ourselves, like Heisenberg, to systems hav-
ing one degree of freedom and assume these to be – from a classical
standpoint – periodic. We shall in the continuation of this publication con-
cern ourselves with the generalization of the mathematical theory to sys-
tems having ah arbitrary number of degrees of freedom, as also to aperiodic
motion. A noteworthy generalization of Heisenberg’s approach lies in our
confining ourselves neither to treatment of nonrelativistic mechanics nor to
calculations involving Cartesian systems of coordinates. The only restriction
which we impose upon the choice of coordinates is to base our considerations
upon libration coordinates, which in classical theory are periodic functions
of time. Admittedly, in some instances it might be more reasonable to
employ other coordinates: for example, in the case of a rotating body to
introduce the angle of rotation ϕ, which becomes a linear function of time.
Heisenberg also proceeded thus in his treatment of the rotator; however, it
remains undecided whether the approach applied there can be justified from
the standpoint of a consistent quantum mechanics.

The mathematical basis of Heisenberg’s treatment is the law of mul-
tiplication of quantum–theoretical quantities, which he derived from an
ingenious consideration of correspondence arguments. The development of
his formalism, which we give here, is based upon the fact that this rule of
multiplication is none other than the well–known mathematical rule of ma-
trix multiplication. The infinite square array (with discrete or continuous
indices) which appears at the start of the next section, termed a matrix, is
a representation of a physical quantity which is given in classical theory as
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a function of time. The mathematical method of treatment inherent in the
new quantum mechanics is thereby characterized through the employment
of matrix analysis in place of the usual number analysis.

Using this method, we have attempted to tackle some of the simplest
problems in mechanics and electrodynamics. A variational principle, de-
rived from correspondence considerations, yields equations of motion for the
most general Hamilton function which are in closest analogy with the clas-
sical canonical equations. The quantum condition conjoined with one of the
relations which proceed from the equations of motion permits a simple ma-
trix notation. With the aid of this, one can prove the general validity of the
law of conservation of energy and the Bohr frequency relation in the sense
conjectured by Heisenberg: this proof could not be carried through in its
entirety by him even for the simple examples which he considered. We shall
later return in more detail to one of these examples in order to derive a basis
for consideration of the part played by the phases of the partial vibrations in
the new theory. We show finally that the basic laws of the electromagnetic
field in a vacuum can readily be incorporated and we furnish substantiation
for the assumption made by Heisenberg that the squares of the absolute
values of the elements in a matrix representing the electrical moment of an
atom provide a measure for the transition probabilities.

Chapter 1. Matrix Calculation

1. Elementary operations. Functions

We consider square infinite matrices, 2 which we shall denote by heavy
type to distinguish them from ordinary quantities which will throughout be
in light type,

a = (a(nm)) =







a(00) a(01) a(02) · · ·
a(10) a(11) a(12) · · ·
a(20) a(21) a(22) · · ·
· · · · · · · · ·





 .

2Further details of matrix algebra can be found, e.g., in M. Bocher, Einführung in die
höhere Algebra (translated from the English by Hans Beck; Teubner, Leipzig, 1910) § 22–
25; also in R. Courant and D. Hilbert, Methoden der mathematischen Physik 1 (Springer,
Berlin, 1924) Chapter I.
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Equality of two matrices is defined as equality of corresponding components:

a = b means a(nm) = b(nm). (1)

Matrix addition is defined as addition of corresponding components:

a = b + c means a(nm) = b(nm) + c(nm). (2)

Matrix multiplication is defined by the rule “rows times columns”, familiar
from the theory of determinants:

a = bc means a(nm) =
∞∑

k=0

b(nk)c(km). (3)

Powers are defined by repeated multiplication. The associative rule applies
to multiplication and the distributive rule to combined addition and multi-
plication:

(ab)c = a(bc); (4)

a(b + c) = ab + ac. (5)

However, the commutative rule does not hold for multiplication: it is not in
general correct to set ab = ba. If a and b do satisfy this relation, they are
said to commute.

The unit matrix defined by

1 = (δnm),

{
δnm = 0 for n 6= m,

δnm = 1
(6)

has the property
a1 = 1a = a. (6a)

The reciprocal matrix to a, namely a−1, is defined by3

a−1a = aa−1 = 1 (7)

As mean value of a matrix a we denote that matrix whose diagonal elements
are the same as those of a whereas all other elements vanish:

ã = (δnma(nm)). (8)

3As is known, a−1 is uniquely defined by (7) for finite square matrices when the deter-
minant A of the matrix a is non–zero. If A = 0 there is no matrix to a.
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The sum of these diagonal elements will be termed the diagonal sum of the
matrix a and written as D(a), viz.

D(a) =
∑

n

a(nm). (9)

From (3) it is easy to prove that if the diagonal sum of a product
y = x1x2 · · ·xm be finite, then it is unchanged by cyclic rearrangement of
the factors:

D(x1x2 · · ·xm) = D(xrxr+1 · · ·xmx1x2 · · ·xr−1). (10)

Clearly, it suffices to establish the validity of this rule for two factors.
If the elements of the matrices a and b are functions of a parameter t,

then
d

dt

∑

n

a(nk)b(km) =
∑

k

{ȧ(nk)b(km) + a(nk)b(km)},

or from the definition (3):

d

dt
(ab) = ȧb + aḃ. (11)

Repeated application of (11)

d

dt
(x1x2 · · ·xn) = ẋ1x2 · · ·xn + x1ẋ2 · · ·xn + · · ·+ x1x2 · · · ẋn. (11′)

From the definitions (2) and (3) we can define functions of matrices. To begin
with, we consider as the most general function of this type, f(x1,x2 · · ·xm),
one which can formally be represented as a sum of a finite or infinite number
of products of powers of the arguments xk; weighted by numerical coeffi-
cients. Through the equations

f1(y1, · · ·yn; x1, · · ·xn) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

fn(y1, · · ·yn; x1, · · ·xn) = 0
(12)

we can then also define functions yl(x1, . . .xn); namely, in order to obtain
functions yl; having the above form and satisfying equation (12), the yl(
need only be set in form of a series in increasing power products of the xk and
the coefficients determined through substitution in (12). It can be seen that
one will always derive as many equations as there are unknowns. Naturally,
the number of equations and unknowns exceeds that which would ensue

5



from applying the method of undetermined coefficients in the normal type of
analysis incorporating commutative multiplication. In each of the equations
(12), upon substituting the series for the yl; and gathering together like
terms one obtains not only a sum term C ′x1x2 but also a term C ′′x2x1 and
thereby has to bring both C ′ and C” to vanish (e.g., not only C ′+C”). This
is, however, made possible by the fact that in the expansion of each of the
yl, two terms x1x2 and x2x1 appear, with two available coefficients.

2. Symbolic differentiation

At this stage we have to examine in detail the process of differentiation
of a matrix function, which will later be employed frequently in calculation.
One should at the outset note that only in a few respects does this process
display similarity to that of differentiation in ordinary analysis. For example,
the rules for differentiation of a product or of a function of a function here
no longer apply in general. Only if all the matrices which occur commute
with one another can one apply all the rules of normal analysis to this
differentiation.

Suppose

y =
s∏

m=1

xlm = xl1xl2 . . .xls . (13)

We define

∂y

∂xk
=

s∑

r=1

δlrk

s∏

m=r+1

xlm

m=r−1∏

m=1

xlm ,

{
δjk = 0 for j 6= k,

δkk = 1.
(14)

This rule may be expressed as follows: In the given product, one re-
gards all factors as written out individually (e.g., not as x3

1x2
2, but as

x1x1x1x2x2); one then picks out any factor xk and builds the product
of all the factors which follow this and which precede (in this sequence).
The sum of all such expressions is the differential coefficient of the product
with respect to this xk.

The procedure may be illustrated by some examples:

y = xn,
dy
dx

= nxn−1

y = xn1xm2 ,
∂y
∂x1

= xn−1
1 xm2 + xn−2

1 xm2 x1 + · · ·+ xm2 xn−1
1 ,

y = x2
1x2x1x3,

∂y
∂x1

= x1x2x1x3 + x2x1x3x1 + x3x
2
1x2.
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If we further stipulate that

∂(y1 + y2)

∂xk
=
∂y1

∂xk
+
∂y2

∂xk
, (15)

then the derivative ∂y/∂x is defined for the most general analytical functions
y.

With the above definitions, together with that of the diagonal sum (9),
there follows the relation

∂D(y)

∂xk(nm)
=

∂y

∂xk
(mn), (16)

on the right–hand side of which stands the mn–component of the matrix
∂y/∂xk. This relation can also be used to define the derivative ∂y/∂xk. In
order to prove (16), it obviously suffices to consider a function y having the
form (13). From (14) and (3) it follows that

∂y

∂xk(mn)
=

s∑

r=1

δlrk
∑

τ

s∏

p=r+1

xlp(τpτp+1)
r−1∏

p=1

xlp(τpτp+1); (17)

τr+1 = m, τs+1 = τ1, τr = n.

On the other hand, from (3) and (9) ensues

∂D(y)

∂xk(mn)
=

s∑

r=1

δlrk
∑

τ

r−1∏

p=1

xlp(τpτp+1)
s∏

p=r+1

xlp(τpτp+1); (17′)

τ1 = τs+1, τr = n, τr+1 = m.

Comparison of (17) with (17’) yields (16).
We here pick out a fact which will later assume importance and which

can be deduced from the definition (14): the partial derivatives of a product
are invariant with respect to cyclic rearrangement of the factors. Because of
(16) this can also be inferred from (10).

To conclude this introductory section, some additional description is
devoted to functions g(pq) of the variables. For

y = psqr (18)

it follows from (14) that

∂y

∂p
=

s−1∑

l−1

ps−1−lqrpl,
∂y

∂q
=

r−1∑

j=1

qr−1−jpsqj . (18′)
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The most general function g(pq) to be considered is to be represented
in accordance with § 1 by a linear aggregate of terms

z =
k∏

j=1

(psjq
r
j). (19)

With the abbreviation

pl =
k∏

j=l+1

(psjq
r
j)

l−1∏

j=1

(psjq
r
j), (20)

one can write the derivatives as

∂z
∂p

=
k∑

l=1

sl−1∑

m=0
psl−1−mqrlplp

m,

∂z
∂q

=
k∑

l=1

rl−1∑

m=0
qrl−1−mplp

slqm.






(21)

From these equations we find an important consequence. We consider the
matrices

d1 = q
∂z

∂q
−
∂z

∂q
q, d2 = p

∂z

∂p
−
∂z

∂p
p. (22)

From (21) we have

d1 =
k∑

l=1

(qrlPlp
sl −Plp

slqrl),

d2 =
k∑

l=1

(pslqrlPl −Plp
slqrl).

and thus it follows that

d1 + d2 =
k∑

l=1

(pslqrlPl −Plp
slqrl).

Herein the second member of each term cancels the first member of the
following, and the first and last member of the overall sum also cancel, so
that

d1 + d2 = 0. (23)
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Because of its linear character in z, this relation holds not only for expres-
sions z having the form (19), but indeed for arbitrary analytical functions
g(pq).4

In concluding this brief survey of matrix analysis, we establish the fol-
lowing rule: Every matrix equation

F(x1,x2, . . .xr) = 0

remains valid if in all the matrices xj one and the same permutation of all
rows and columns is undertaken. To this end, it suffices to show that for
two matrices a, b which thereby become transposed to a′, b′, the following
invariance conditions apply:

a′ + b′ = (a + b)′, a′b′ = (ab)′,

wherein the right–hand sides denote those matrices which are formed from
a + b and ab respectively by such an interchange.

We set forth this proof by replacing the procedure of permutation by
that of multiplication with a suitable matrix.5

We write a permutation as

(
0 1 2 3 . . .

k0 k1 k2 k3 . . .

)

=

(
n

kn

)

and to this we assign a permutation matrix,

p = (p(nm)), p(nm) =

{
1 when m = kn
0 otherwise.

The transposed matrix to p is

p̃ = (p̃(nm)), p̃(nm) =

{
1 when n = km
0 otherwise.

4More generally, for function of r variables, one has

∑

r

(

xr
∂g

∂xr
−

∂g

∂xr
xr

)

= 0.

5The method of proof adopted here possesses the merit of revealing the close connection
of permutations with an important class of more general transformations of matrices. The
validity of the rule in question can however also be established directly on noting that in
the definitions of equality, as also of addition and multiplication of matrices, no use was
made of order relationships between the rows or the columns.
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On multiplying the two together, one has

pp̃ = (
∑

k

p(nk)p̃(km)) = (δnm) = 1,

since the two factors p(nk) and p̃(km) differ from zero simultaneously only
if k = kn = km, i.e., when n = m. Hence p̃ is reciprocal to p:

p̃ = p−1.

If now a be any given matrix, then

pa = (
∑

k

p(nk)a(km)) = (a(kn,m))

is a matrix which arises from the permutation

(
n

kn

)

of the rows of a and

equivalently

ap−1 = (
∑

k

a(mk)p̃(km)) = (a(n, km))

is the matrix arising from permutation of the columns of a. One and the
same permutation applied both to the rows and the columns of a thus yields
the matrix

a′ = pap−1.

Thence follows directly

a′ + b′ = p(a + b)p−1 = (a + b)′,
a′b′ = pabp−1 = (ab)′

which proves our original contention.
It is thus apparent that from matrix equations one can never determine

any given sequence or order of rank of the matrix elements. Moreover, it
is evident that a much more general rule applies, namely that every matrix
equation is invariant with respect to transformations of the type

a′ = bab−1,

where b denotes an arbitrary matrix. We shall sec later that this does not
necessarily always apply to matrix differential equations.
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Chapter 2. Dynamics

3. The basic laws

The dynamic system is to be described by (lie spatial coordinate q and
the momentum p, these being represented by matrices

q = (q(nm)e2πiν(nm)t, p(p(nm)e2πiν(nm)t). (24)

Here the ν(nm) denote the quantum-theoretical frequencies associated with
transitions between states described by the quantum numbers n and m. The
matrices (24) are to be Hermitian, e.g., on transposition of the matrices,
each element is to go over into its complex conjugate value, a condition
which should apply for all real t. We thus have

q(nm)q(mn) = |q(nm))|2 (25)

and
ν(nm) = −ν(mn). (26)

If q be a Cartesian coordinate, then the expression (25) is a measure of the
probabilities6 of the transitions n⇔ m.

Further, we shall require that

ν(jk) + ν(kl) + ν(lj) = 0. (27)

This can be expressed together with (26) in the following manner: there
exist quantities Wn such that

hν(nm) = Wn −Wm. (28)

From this, with equations (2), (3), it follows that a function g(pq) invariably
again takes on the form

g = (g(nm)e2πiν(nm)t) (29)

and the matrix (g(nm)) therein results from identically the same process
applied to the matrices (q(nm)), (p(nm)) as was employed to find g from
q,p. For this reason we can henceforth abandon the representation (24) in
favour of the shorter notation

q = (q(nm)), p = (p(nm)). (30)

6In this connection see §8.
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For the time derivative of the matrix g = (g(nm)), recalling to mind (24)
or (29), we obtain the matrix

ġ = 2πi(ν(nm)g(nm)). (31)

If ν(nm) 6= 0 when n 6= m, a condition which we wish to assume, then the
formula ġ = 0 denotes that g is a diagonal matrix with g(nm) = δnm(nn).

A matrix differential equation ġ = a is invariant with respect to that
process in which the same permutation is carried out on rows and columns
of all the matrices and also upon the numbers Wn In order to realize this,
consider the diagonal matrix

W = (δnmWn).

Then
Wg = (

∑

k

δnkWng(km)) = (Wng(nm)),

gW = (
∑

k

g(nk)δkmWk) = (Wmg(nm)),

i.e., according to (31),

ġ =
2πi

h
((Wn −Wm)g(nm)) =

2πi

h
(Wg − gW).

If now p be a permutation matrix, then the transform of W,

W′ = pWp−1 = (δnkmWnk)

is the diagonal matrix with the permuted Wn along the diagonal. Thence
one has

pġp−1 =
2πi

h
(W′g′ − g′W′) = ġ′,

where g′ = pgp−1 and ġ′ denotes the time derivative of g′ constructed in
accordance with the rule (31) with permuted Wn.

The rows and columns of ġ thus experience the same permutation as
those of g, and hence our contention is vindicated.

It is to be noted that a corresponding rule does not apply to arbitrary
transformations of the form a′ = bab−1 since for these W′ is no longer a
diagonal matrix. Despite this difficulty, a thorough study of these general
transformations would seem to be called for, since it offers promise of insight
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into the deeper connections intrinsic to this new theory: we shall later revert
to this point.7

In the case of a Hamilton function having the form

H =
1

2m
p2 + U(q)

we shall assume, as did Heisenberg, that the equations of motion are just of
the same form as in classical theory, so that using the notation of §2 we can
write:

q̇ = ∂H
∂p = 1

mp,

ṗ = −∂H
∂q

= −∂U
∂q

.





(32)

We now use correspondence considerations to try more generally to elu-
cidate the equations of motion belonging to an arbitrary Hamilton function
H(pq). This is required from the standpoint of relativistic mechanics and in
particular for the treatment of electron motion under the influence of mag-
netic fields. For in this latter case, the function H cannot in a Cartesian
coordinate system any longer be represented by the sum of two functions of
which one depends only on the momenta and the other on the coordinates.

Classically, equations of motion can be derived from the action principle

t1∫

t0

Ldt =

t1∫

t0

{pq̇ −H(pq)}dt = extremum. (33)

If we now envisage the Fourier expansion L substituted in (33) and the time
interval t1 − t0 taken sufficiently large, we find that only the constant term
of L supplies a contribution to the integral. The form which the action
principle thence acquires suggests the following translation into quantum
mechanics:

The diagonal sum D(L) =
∑

k

L(kk) is to be made an extremum:

D(L) = D(pq̇−H(pq)) = extremum, (34)

namely, by suitable choice of p and q, with ν(nm) kept fixed.
Thus, by setting the derivatives of D(L) with respect to the elements of

p and q equal to zero, one obtains the equations of motion

2πiν(nm)q(nm) =
∂D(H)

dp(nm)
,

7Cf. the continuation of this work, lo lie published forthwith.
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2πiν(mn)p(mn)
∂D(H)

∂q(mn)
.

From (26), (31) and (16) one observes that these equations of motion
can always be written in canonical form,

q̇ = ∂H
∂p

,

ṗ = −∂H
∂q .





(35)

For the quantization condition, Heisenberg employed a relation proposed
by Thomas8 and Kuhn.9 The equation

J =

∮
pdq =

1/ν∫

0

pq̇dt

of “classical” quantum theory can, on introducing the Fourier expansions of
p and q,

p =
∞∑

τ=−∞

pτe
2πiντt, q =

∞∑

τ=−∞

qτe
2πiντt,

be transformed into

1 = 2πi
∞∑

τ=−∞

τ
∂

∂J
(qτp−τ ). (36)

If therein one lias p = mq̇, one can express the pτ in terms of qτ and
thence obtain that classical equation which on transformation into a differ-
ence equation according to the principle of correspondence yields the formula
of Thomas and Kuhn. Since here the assumption that p = mq̇ should be
avoided, we are obliged to translate equation (36) directly into a difference
equation.

The following expressions should correspond:

∞∑

τ=−∞

τ
∂

∂J
(qτp−τ ) with

1

h

∞∑

τ=−∞

q(n+ τ, n)p(n, n+ τ)− q(n, n− τ)p(n− τ, n));

8W. Thomas, Naturwiss. 13 (1925) 627.
9W. Kuhn, Zs. f. Phys. 33 (1925) 408.
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where in the right-hand expression those q(nm), p(nm) which take on a
negative index are to be set equal to zero. In this way we obtain the quan-
tization condition corresponding to (36) as

∑

k

(p(nk)q(kn)− q(nk)p(kn)) =
h

2πi
. (37)

This is a system of infinitely many equations, namely one for each value
of n.

In particular, for p = mq̇ this yields

∑

k

ν(kn)|q(nk)|2 =
h

8π2m
,

which, as may easily be verified, agrees with Heisenberg’s form of the quan-
tization condition, or with the Thomas-Kuhn equation. The formula (37)
has to be regarded as the appropriate generalization of this equation.

Incidentally one sees from (37) that the diagonal sum D(pq) necessar-
ily becomes infinite. For otherwise one would have D(pq)−D(qp) = 0
from whereas (37) leads to D(pq)−D(qp) =∞. Thus the matrices under
consideration arc never finite.10

4. Consequences. Energy-conservation and frequency laws

The content of the preceding paragraphs furnishes the basic rules of
the new quantum mechanics in their entirety. All other laws of quantum
mechanics, whose general validity is to be verified, must be derivable from
these basic tenets. As instances of such laws to be proved, the law of energy
conservation and the Bohr frequency condition primarily enter into consid-
eration. The law of conservation of energy states that if H be the energy,
then Ḣ = 0, or that H is a diagonal matrix. The diagonal elements H(nn)
of H are interpreted, according to Heisenberg, as the energies of the various
states of the system and the Bohr frequency condition requires that

hν(nm) = H(nn)−H(mm),

or
Wn = H(nn) + const.

10Further, they do not belong to the class of “bounded” infinite matrices hitherto almost
exclusively investigated by mathematicians.
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We consider the quantity
d = pq− qp.

From (11), (35) one finds

ḋ = ṗq + pq̇− q̇p− qṗ = q
∂H

∂q
−
∂H

∂q
q + p

∂H

∂p
−
∂H

∂p
p.

Thus from (22), (23) it follows that ḋ = 0 and d is a diagonal matrix. The
diagonal elements of d are, however, specified just by the quantum condition
(27). Summarizing, we obtain the equation

pq− qp =
h

2πi
1, (38)

on introducing the unit matrix 1 defined by (6). We term the equation (38)
the “stronger quantum condition” and base all further conclusions upon it.

From the form of this equation, we deduce the following: If an equation
(A) be derived from (38), then (A) remains valid if p be replaced by q and
simultaneously h by −h. For this reason one need for instance derive only
one of the following two equations from (38), which can readily be performed
by induction

pnq = qpn + n
h

2πi
pn−1, (39)

qnp = pqn − n
h

2πi
qn−1. (39′)

We shall now prove the energy-conservation and frequency laws, as ex-
pressed above, in the first instance for the case

H = H1(p) + H2(q).

From the statements of §1, it follows that we may formally replace H1(p)
and bfH2(q) by power expansions

H1 =
∑

s

asp
s, H2 =

∑

s

bsq
s.

Formulae (39) and (39’) indicate that

Hq− qH = h
2πi

∂H
∂p

,

Hp− pH = − h
2πi

∂H
∂p

.





(40)
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Comparison with the equations of motion (35) yields

q̇ = 2πi
h

(Hq− qH).

ṗ = 2πi
h

(Hp− pH).





(41)

Denoting the matrix Hg − gH by

∣
∣
∣
∣

H
g

∣
∣
∣
∣ for brevity, one has

∣
∣
∣
∣
∣

H
ab

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

H
a

∣
∣
∣
∣
∣
b + a

∣
∣
∣
∣
∣

H
b

∣
∣
∣
∣
∣
; (42)

from which generally for g = g(pq) one may conclude that

ġ =
2πi

h

∣
∣
∣
∣
∣

H
g

∣
∣
∣
∣
∣

=
2πi

h
(Hg − gH). (43)

To establish this result, one need only conceive ġ as expressed in function of

p,q and ṗ, q̇ with the aid of (11), (11′), and

∣
∣
∣
∣

H
g

∣
∣
∣
∣ as evaluated by means

of (42) in function of p,q and

∣
∣
∣
∣

H
p

∣
∣
∣
∣,

∣
∣
∣
∣

H
q

∣
∣
∣
∣ followed by application of the

relations (41). In particular, if in (43) one sets g = H, one obtains

Ḣ = 0. (44)

Now that we have verified the energy-conservation law and recognized the
matrix H to be diagonal, equation (41) can be put into the form

hν(nm)q(nm) = (H(nn)−H(mm))q(nm),

hν(nm)p(nm) = (H(nn)−H(mm))p(nm),

from which the frequency condition follows.
If we now go over to consideration of more general Hamilton functions

H∗ = H∗(pq), it can easily be seen that in general Ḣ∗ no longer vanishes
(examples such as H∗ = p2q, readily reveal this). It can however be observed
that the Hamilton function H = 1

2(p2q + qp2) yields the same equations of

motion as H∗ and that Ḣ again vanishes. In consequence we may express
the energy-conservation and frequency laws in the following way: To each
function H∗ = H∗(pq) there can be assigned a function H = H(pq) such

17



that as Hamiltonians H∗ and H yield the same equations of motion and
that for these equations of motion H assumes the role of an energy which is
constant in time and which fulfils the frequency condition.

On bearing in mind the considerations discussed above, it suffices to
show that the function H to be specified satisfies not only the conditions

∂H

∂p
=
∂H∗

∂p
,

∂H

∂q
=
∂H∗

∂q
, (45)

but in addition satisfies equations (40). From §1, the matrix H∗ is formally
to be represented as a sum of products of powers of p and q. Because of
the linearity of equations (40), (45) in H,H∗ we have simply to specify the
commensurate sum term in H a counterpart to each individual sum term in
H∗. Thus we need consider solely the case

H∗ =
k
Π
j−1

(psj ,qrj ). (46)

It follows from the remarks of §2 that equations (45) can be satisfied by
specifying H as a linear form of those products of powers of p,q which arise
from H∗ through cyclic interchange of the factors; herein the sum of the
coefficients must be held to unity. The question as to how these coefficients
are to be chosen so that equations (40) may also be satisfied is less easy to
answer. It may at this juncture suffice to dispose of the case k = 1, namely

H∗ = psqr. (47)

The formula (39) can be generalized11 to

pmqn − qnpn = m
h

2πi

n−1∑

l=0

qn−1−lpm−1ql. (48)

11A different generalization is furnished by the formulae

pmqn =

m,n∑

j=0

j!

(
m

j

)(
n

j

)(
h

2πi

)j
qn−jpm−j ,

qnpm =

m,n∑

j=0

j!

(
m

j

)(
n

j

)(
h

2πi

)j
pm−jqn−j ,

where j runs to the lesser of the two integers m,n.
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For n = 1 this reverts to (39); in general (48) ensues from the fact that
because of (39) one has

pmqn+1 − qn+1pm = (pmqn − qnpm)q +m
h

2πi
qnpm+1.

The new formula

pmqn − qnpm = n
h

2πi

m−1∑

j=0

pm−1−jqn−1pj (48′)

is obtained on interchanging p and q and reversing the sign of h.
Comparison with (48) yields

1

s+ 1

s∑

l=0

ps−lqrpl =
1

r + 1

r∑

j=0

qr−jpsqj . (49)

We now assert: The matrix H belonging to H∗ as given by (47) is:

H =
1

s+ 1

s∑

l=0

ps−lqrpl. (50)

We need only prove equations (40), to which end we recall the derivatives,
(18′) §2.

From (50), we now obtain the relation

Hp− pH =
1

s+ 1
(qrps+1 − ps+1qr),

and according to (48) this is equivalent to the lower of equations (40).
Further, using (49) we find

Hq− qH =
1

r + 1
(psqr+1 − qr+1ps),

and by (48′) this is equivalent to the upper of equations (40). This completes
the requisite proof.

Whereas in classical mechanics energy conservation (Ḣ = 0) is directly
apparent from the canonical equations, the same law of energy conservation
in quantum mechanics, H = 0 lies, as one can see, more deeply hidden
beneath the surface.

That its demonstrability from assumed postulates is far from being triv-
ial will be appreciated if, following more closely the classical method of
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proof, one sets out to prove H to be constant simply by evaluating Ḣ. To
this end, one first has to express Ḣ as function of p,q and ṗ, q̇ with the aid
of (11), (11′), whereupon for ṗ and q̇ the values −∂H/∂q, ∂H/∂p have to
be introduced. This yields Ḣ in function of p and q. Equation (38) or the
formulae quoted in the footnote to equation (48) which were derived from
(38) permit this function to be converted into a sum of terms of the type
apsqr and one then has to prove that the coefficient a in each of such terms
vanishes. This calculation for the most general case, as considered above
along different lines, becomes so exceedingly involved12 that it seems hardly
feasible. The fact that nonetheless energy-conservation and frequency laws
could be proved in so general a context would seem to us to furnish strong
grounds to hope that this theory embraces truly deep-seated physical laws.

In conclusion, we append a result here which can easily be derived from
the formulae of this section, namely: Equations (35), (37) can be replaced by
(38) and (44) (with H representing the energy); the frequencies are thereby
to be derived from the frequency condition.

In the continuation to this paper, we shall examine the important appli-
cations to which this theorem gives rise.

Chapter 3. Investigation of the Anharmonic Oscil-
lator

The anharmonic oscillator, having

H =
1

2
p2 +

1

2
ω2

0q2 +
1

2
λq3 (51)

has already been considered in detail by Heisenberg. Nevertheless, its inves-
tigation will here be renewed with the aim of determining the most general
solution of the fundamental equations for this case. If the basic equations
of the present theory are indeed complete and do not require to be sup-
plemented any further, then the absolute values |q(nm)|, |p(nm)| of the
elements of the matrices q and p must uniquely be determined by these
equations, and thus it becomes important to check this for the example
(51). On the other hand, it is to be expected that an uncertainty will still
persist with respect to the phases φnm, ϕϕnm in the relations

q(nm) = |q(nm)|eiφnm ,

12For the case H = (1/2m)p2 + U(q) it can immediately be carried out with the aid of
(39′).
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p(nm) = |p(nm)|eiϕnm .

For the statistical theory, e.g., of the interaction of quantised atoms with
external radiation fields, it becomes of fundamental importance to ascertain
the precise degree of such uncertainty.

5. Harmonic oscillator

The starting point in our considerations is the theory of the harmonic
oscillator; for small λ, one can regard the motion as expressed by equation
(51) to be a perturbation of the normal harmonic oscillation having energy

H =
1

2
p2 +

1

2
ω2

0q2. (52)

Even for this simple problem it is necessary to supplement Heisenberg’s
analysis. This latter employs correspondence considerations to arrive at
significant deductions as to the form of the solution: namely, since classically
only a single harmonic component is present, Heisenberg selects a matrix
which represents transitions between adjacent states only, and which thus
has the form

q =







0 q(01) 0 0 0 . . .

q(10) 0 q(12) 0 0 . . .

0 q(21) 0 q(23) 0 . . .

. . . . . . . . . . . . . . . . . .





 . (53)

We here strive to build up the entire theory self-dependently, without invok-
ing assistance from classical theory on the basis of the principle of correspon-
dence. We shall therefore investigate whether the form of the matrix (53)
cannot itself be derived from the basic formulae or, if this proves impossible,
which additional postulates are required.

From what has been stated in §3 regarding the invariance with respect
to permutation of rows and columns, one can see right away that the ex-
act form of the matrix (53) can never be deduced from the fundamental
equations, since if rows and columns be subjected to the same permutation,
the canonical equations and the quantum condition remain invariant and
thereby one obtains a new and apparently different solution. But all such
solutions naturally differ only in the notation, i.e., in the way the elements
are numbered. We seek to prove that through a mere renumbering of its ele-
ments, the solution can always be brought into the form (53). The equation
of motion

q̈ + ω2
0q = 0 (54)
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runs as follows for the elements:

(ν2(nm)− ν2
0)q(nm) = 0, (55)

where
ω0 = 2πν0, hν(nm) = Wn −Wm.

From the stronger quantum condition

pq− qp =
h

2πi
1, (56)

it follows that for each n there must exist a corresponding n′ such that
q(nn′) 6= 0, since if there were a value of n for which all q(nn′) were equal
to zero, then the with diagonal element of pq− qp would be zero, which
contradicts the quantum condition. Hence equation (55) implies that there
is always an n′ for which

|Wn −Wn′ | = hν0.

But since we have assumed in our basic principles that when n 6= m, the
energies are always unequal (Wn 6= Wm), it follows that at most two such
indices n′ and n′′ can exist, for the corresponding Wn′ ,Wn′′ are solutions of
the quadratic equation

(Wn − x)2 = h2ν2
0 ;

and if indeed two such indices n′, n′′ exist, it follows that the corresponding
frequences must be related as:

ν(nn′) = −ν(nn′′). (57)

Now from (56) we get
∑

k

ν(kn)|q(nk)|2 = ν(n′n){|q(nn′)|2 − |q(nn′′)|2} = h/8π2, (58)

and the energy (52) ensues as

H(nm) = 1
2 × 4π2

∑

k

{−ν(nk)ν(km)q(nk)q(km) + ν2
0q(nk)q(km)}

= 2π2
∑
q(nk)q(km){ν2

0 − ν(nk)ν(km)}.

In particular, for m = n we have

H(nn) = Wn = 4π2ν2
0(|q(nn′)|2 + |q(nn′′)|2). (59)

Moreover, we can now distinguish between three possible cases:
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(a) no n′′ exists and one has Wn′ > Wn;

(b) no n′′ exists and one has Wn′ < Wn,

(c) n′′ exists.

In case (b) we now consider n′ in place of n; to this there belong at most
two indices (n′)′ and (n′)′′ and of these, one lias to equal n. We thereby revert
to one of the cases (a) or (c) and can accordingly omit further consideration
of (b).

In case (a), ν(n′n) = +ν0 and from (58) it follows that

ν0|q(nn
′)|2 = h/8π2, (60)

and thus from (59) that

Wn = H(nn) = 4π2ν2
0 |q(nn

′)|2 =
1

2
ν0h.

Because of the assumption that Wn 6= Wm for n 6= m there is thus at most
one index n = n0for which the case (a) applies.

If such an n0 exists, we can specify a series of numbers n0, n1, n2, n3, . . . ,

such that (nk)
′ = nk+1 and Wk+1 > Wk. Then invariably (nk+1)′′ = nk.

Hence for k > 0, equations (58) and (59) give

H(nknk) = 4π2ν2
0{|q(nk, nk+1)|2 + |q(nk, nk−1)|2), (61)

1

2
h = 4π2ν0{|q(nk, nk+1)|2 − |q(nk, nk−1)|2}. (62)

From (60) and (62) it follows that

|q(nk, nk+1)|2 =
h

8π2ν0
(k + 1), (63)

and thence from (61) that

Wnk = H(nk, nk) = ν0h(k +
1

2
). (64)

Now, we still have to check whether it be possible that there is no value of
n for which case (a) applies. Beginning with an arbitrary n0 we can then
build n′0 = n, and n′′0 = n−1 and with each of these latter write n′1 = n2,
n′′1 = n0 and n′−1 = n0, n

′′
−1 = n−2 etc. In this manner we obtain a series of

numbers . . . n−2, n−1, n0, n1, n2 . . . ,, and equations (61), (62) hold for every
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k between −∞ and +∞. But this is impossible, since by (62) the quantities
xk = |q(nk+1, nk)|2 form an equispaced series of numbers, and since they
are positive, there must be a least value. The relevant index can then again
be designated as n0 and we thereby revert to the previous case – thus here
also, the formulae(63), (64) apply.

One can further sec that every number n must be contained within the
numbers nk, since otherwise one could construct a new series (65) proceeding
from n, and for this formula (60) would again hold. The starting terms of
both series would then have the same value Wn = H(nn), which is not
possible.

This proves that the indices 0, 1, 2, 3 . . . can be rearranged into a new
sequence n0, n1, n2, n3 . . . such that formulae (63), (64) apply: with these
new indices, the solution then takes on Heisenberg’s form (53). Hence this
appears as the “normal form” of the general solution. By virtue of (64), it
possesses the property that

Wnk+1
> Wnk .

If, inversely, one stipulate that Wn = H(nn) should always increase with
n, then it necessarily follows that nk = k; this principle thus uniquely es-
tablishes the normal form of the solution. But thereby only the notation
becomes fixed and the calculation more transparent: nothing new is con-
ferred physically.

Therein lies the big difference between this and the previously adopted
semiclassical methods of determining the stationary states. The classically
calculated orbits merge into one another continuously; consequently the
quantum orbits selected at a later stage have a particular sequence right
from the outset. The new mechanics presents itself as an essentially discon-
tinuous theory in that herein there is no question of a sequence of quantum
states defined by the physical process, but rather of quantum numbers which
are indeed no more than distinguishing indices which can be ordered and
normalized according to any practical standpoint whatsoever (e.g., accord-
ing to increasing energy Wn).

6. Anharmonic oscillator

The equations of motion

q̈ + ω2
0q + λq2 = 0, (66)
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together with the quantum condition yield the following system of equations
for the elements:

(ω2
0 − ω

2(nm))q(nm) + λ
∑

k

q(nk)q(km) = 0,
∑

k

ω(nk)q(nk)q(kn) = −h/4π.
(67)

We introduce series expansions

ω(nm) = ω0(nm) + λω(1)(nm) + λ2ω(2)(nm) + . . .

q̇(nm) = q0(nm) + λq(1)(nm) + λ2q(2)(nm) + . . .
(68)

in seeking the solution.
When λ = 0, one lias the case of the harmonic oscillator considered in

the previous section; we write the solution (53) in the form

q0(nm) = anδn,m−1 + amδn−1,m, (69)

where the bar denotes the conjugate complex value. If one builds the square
or higher powers of the matrix q0 = (q0(nm)), one arrives at matrices of
similar form, being composed of sums of terms

(ξ(p)
nm = ξnδn,m−p + ξmδn−p,m. (70)

This prompts us to try a solution of the form

q0(nm) = (a)
(1)
nm,

q(1)(nm) = (x)0
nm + (x′)

(2)
nm,

q(2)(nm) = (y)
(1)
nm + (y′)

(3)
nm,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(71)

n which odd and even values of the index p always alternate. If one actually
inserts this in the approximation equations

λ :






(ω2
0 −ω0(nm)2)q(1)(nm)− 2ω0(nm)ω(1)nm)q0(nm)

+
∑

k

q0(nk)q0(km) = 0,
∑

k

{ω0(nk) (q0(nk)q(1)(kn) + q(1)(nk)q0(kn))

+ω(1)(nk)q0(nk)q0(kn)} = 0,






(72)
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λ2 :






(ω2
0 −ω0(nm)2)q2)(nm)− 2ω0(nm)ω(1)(nm)q(1)(nm)

−(ω(1)(nm)2 + 2ω0(nm)ω(2)(nm))q0(nm)

+
∑

k

(q0(nk)q(1)(km) + q(1)(nk)q0(km)) = 0,

∑

k

{ω0nk) (q0(nk)q(2)(km) + q(1)(nk)q(1)(km)

+q(2)(nk)q0(km)) + ω(1)(nk)(q0(nk)q(1)(km)

+q(1)(nk)q0(km)) + ω(2)(nk)q0(nk)q0(km)} = 0






(73)
and notes the multiplication rule

∑

k

Ωnkm(ξ)
(p)
nk (η)

(q)
km = Ωn,n+p,n+p+qξnηn+pδn,m−p−q

+Ωn,n+p,n+p−qξnη̄n+p−qδn,m−p+q
+Ωn,n−p,n−p+q ξ̄n−pηn−pδn,m+p−q

+Ωn,n−p,n−p−q ξ̄n−pη̄n−p−qδn,m+p+q,

(74)

one sees, in setting each of the factors of δn,m−s singly to zero, that through
the substitution (71) all conditions can in fact be satisfied and that higher
terms in (71) would identically vanish.

In detail, the calculation yields the following:
The first of the equations (72) gives, after substitution of the expressions

(71),
2ω2

0xn + |an|2 +|an−1|2 = 0,
−3ω2

0x
′
n +anan+1 = 0,

ω
(1)
n,n−1 = 0,





(75)

and the second is identically satisfied. One thus has






xn = −|an|
2 + |an−1|

2

2ω2
0

,

x′n =
anan+1

3ω2
0

.






(76)

The first of the equations (73) yields

2ω0anω
(2)
n,n+1 + 2anxn+1 + 2anxn + ãn−1x

′
n−1 + ãn+1x

′
n = 0,

−8ω2
0y
′
n + anx

′
n+1 = an+2x

′
n = 0,

ω
(1)
n,n−2 = 0,





(77)
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whereas the second equation is not identically satisfied, but furnishes a re-
lation from which yn can be determined:

anỹn + ãnyn − an−1ỹn−1 − ãn−1yn−1 + 2|x′n|
2 − 2|x′n−2|

2

−
ω

(2)
n,n+1
ω0

|an|2 −
ω

(2)
n,n−1
ω0

|an−1|2 = 0.
(78)

The solution is:

ω
(2)
n,n+1 = 1

3ω3
0

(|an+1|2 + |an−1|2 + 3|an|2),

y′n = 1
12ω4

0

anan+1an+2.





(79)

Further, if for brevity one introduces

ηn = anỹn + ãnyn, (80)

then the η determined by the equation

ηn − ηn−1 =
1

ω4
0

(|an|
4 − |an−1|

4 +
1

9
|an|

2|an+1|
2 −

1

9
|an−1|

2|an−2|
2). (81)

Expressions (76) and (79) show that the quantities xn, x
′
n, y
′
n can be ex-

pressed through the solution of the zero-th order approximation an. Thus
their phases are determined by those of the harmonic oscillator. For the
quantities yn, the situation seems to be different, since although ηn can
uniquely be determined from (81), yn cannot be obtained absolutely from
(80). It is probable that the next higher order of approximation gives rise
to an auxiliary determining equation for yn. We have to leave this ques-
tion open here but we should like to indicate its significance as a point of
principle in regard to the completeness of Hie entire theory. All questions
of statistics invariably depend finally upon whether or not our supposition
that of the phases of the q(nm) one in each row (or each column) of the
matrix remains undetermined be valid.

In conclusion we present the explicit formulae which are obtained by
substituting the solution of the harmonic oscillator found previously (§5).
In normal form, by (63), this runs as follows:

an =
√
C(n+ 1))eiϕn , C = h/4πω0 = h/8π2ν0. (82)
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Thence, using (76), (79), (81) one obtains

xn = − C
2ω2

0

(2n+ 1),

x′n = C
3ω2

0

√
(n+ 1)(n+ 2)ei(ϕn+ϕn+1)

y′n =

√
C3

12ω4
0

√
(n+ 1)(n+ 2)(n+ 3)ei(ϕn+ϕn+1+ϕn+2)






(83)

ω
(1)
n,n−1 = 0, ω

(1)
n,n−2 = 0,

ω
(2)
n,n−1 = − 5C

3ω3
2

n;





(84)

that is,

ηn − ηn−1 =
11C2

9ω4
0

(2n+ 1),

ηn = anỹn + ãnyn =
11C2

9ω4
0

(n+ 1)2.

If one sets yn = |yn|eiϕn , then

|yn| cos(ϕn − ψn) =
ηn

2|an|
=

11
√
C3

18ω4
0

√
n+ 13. (85)

In this approximation, yn cannot be specified any more closely than this.
However, we should like to write out the final equations when one makes

the assumption that ψn = ϕn. These are as follows (up to terms of higher
than second order in λ):

ω(n, n− 1) = ω0 − λ2 5C
3ω3

0

n+ . . . ,

ω(n, n− 2) = 2ω0 + . . . ;





(86)
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q(n, n) = −λ C
ω2

0

(2n+ 1) + . . . ,

q(n, n− 1) =
√
Cneiϕn−1

(

1 + λ2 11Cn
18ω4

0

+ . . .

)

,

q(n, n− 2) = λ C
3ω2

0

√
n(n− 1)ei(ϕn−1+ϕn−2) + . . . ,

q(n, n− 3) = λ2

√
C3

12ω4
0

√
n(n− 1)(n− 2)ei(ϕn−1+ϕn−2+ϕn−3) + . . .






(87)
We have also calculated the energy directly and derived the following

formula;

Wn = hν0

(

n+
1

2

)

− λ2 5C2

3ω2
0

(

n(n+ 1) +
17

30

)

+ . . . (88)

The frequency condition is actually satisfied, since, remembering (82), we
have

Wn −Wn−1 = hν0 − λ2 2C2

ω2
0

n+ . . . = h
2πω(n, n− 1),

Wn −Wn−2 = 2hν0 + . . . = h
2πω(n, n− 2).

With the formula (88) we can associate the observation that already in terms
of lowest order there occurs a discrepancy from classical theory which can
formally be removed by the introduction of a “half-integer” quantum number
n′ = n+ 1/2. This has already been remarked by Heisenberg. Incidentally,
our expressions ω(n, n− 1) as given by (86) agree exactly with the classical
frequencies in all respects. For comparison, we note the classical energy to
be13

W (e1)
n = hν0n− λ

2 5C2

3ω2
0

n2 + . . . ,

and thus the classical frequency to be:

ωe1 = 1
h
∂W (e1)

n
∂n

= hν0 − λ2 5C2

3ω2
0
n+ . . .

= ωqu(n, n− 1) = 1
h

(W
(qu)
n −W (qu)

n−1 ).

13See M. Born, Atommechanik (Berlin, 1925), Chapter 4, §42, p. 294; one has to set
a = 1/3 in the formula (6) in order to obtain agreement with the present treatment.
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We have, finally checked that the expression (88) can also be derived
from the Kramers-Born perturbation formula (up to an additive constant).
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