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MATHEMATICAL LoGIic. — Reversible Turing machines. Recursive
insolubility in n € N of the equation u = 0™u, where 0 is an “iso-
morphism of codes.” Note (*) by Mr. Yves Lecerf, presented by
Mr. André Lichnerowicz.

We define “reversible Turing machines” and “isomorphisms of codes 8.” Their
properties make it possible to prove that the equation in n € N, u = 0™u is recur-
sively unsolvable. A second note will apply this to the demonstration of a conjecture
of Schiitzenberger relating the Post correspondence problem to the problem of di-
agonalization of homomorphisms of free monoids.

1. ISOMORPHISMS OF CODES, EPIMORPHISMS OF CODES. — a. A conjecture
of Schiitzenberger. — Given two nontrivial free monoids Af and Sf, and given two
homomorphisms ¢ and 9 of Af into S, consider the problem of the search for non-
trivial solutions € At for the equation of diagonalization gz = vz. A result of
Post (%) is that this equation is recursively unsolvable in the case of ¢ and v being
arbitrary homomorphisms. It is also so when one restricts ¢ to be a monomorphism;
indeed, Chomsky and Schiitzenberger remarked (*) that this case can be reduced to
Post’s Tag-problem (°), itself recursively unsolvable according to a result of Minsky
(3). Schiitzenberger conjectured that the equation ¢z = 1z remains still recursively
unsolvable when ¢ and ¥ are both monomorphisms.

b. Isomorphisms of codes. — Instead of px = 9z, it is equivalent to consider the
equation w = fw, where § = ™" (this is shorthand notation for saying that 6 is
a bijection of pAT into AT defined by fw = vx for w = px). For convenience, we
will call the applications such as € “isomorphisms of codes.” The term recalls that
O(wiwy) = Ow; Bws; and also that, A = { a; }ier designating the alphabet (generators)
of AT, { wa; Yicr and {1pa; }ier are called “codes” on S', because, for an arbitrary y in
ST, there exists a set of indices { 1,4, ...,1, } such that y = ga;, pa;, ... pa;,, and
the same for 1. In fact, it is especially the study of isomorphisms of codes to which
will be devoted the present Note and the following one.

c. Definitions of particular “isomorphisms of codes” using relation elements. —
With es and eg designating the identity elements respectively of Af and St, it goes
without saying implicitly for every 6 that one has es = fes, with pex = ey = eg
(whenceforth a trivial solution for w = fw and for w = §™w, with n € N). This being
the case, each particular isomorphism of codes could be defined by a set of relation
elements of the type { m;, — My }ic1, provided that { m;, }ier and { m;y }ier are
“codes” and that the correspondence is bijective. Indeed, A is implicitly defined by
I, and ST by the symbols used to note the m; , and m;,; and one can interpret the
relations like correspondences { pa; — ¥a; }ier.
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d. Checking whether a given set of words is a code. — Further, the following
property will be often called upon: If C and K, designate respectively a code and
a right prefix-code on ST, and if o is a symbol (generator of S') not appearing in C
nor in K,, then, the set C U aK, is a code. In the same way, replacing K, by a left
prefix-code Ky, the set CU Ky« is a code. Let us recall that any right prefix-code K,
is by definition () such that, if m;, m; € K, and if, with y € S, one has m; = m,y,
then y = eg (while for the left prefix-codes, it is m; = ym; which imposes y = eg).

e. Epimorphisms of codes. — One speaks about “epimorphisms of codes” 7 in
the case of relations { m;, — m;y }ic1, where {m;, }ic1 is a complete code C,,, but
where { m; 4 }ier is only constrained not to contain words other than those of a code
Cy-

2. REVERSIBLE TURING MACHINES. — Let MT be a Turing machine of which
{ep }per and {0, },eq are the sets of states and symbols, and {4, },cr are tape
displacements, which can be £1 or 0. One can define MT by a set of quintuples

XMT = { €p1(i); Taa (i) Epa(i)s Tan (i) Ori) ieT,

where the indices pi, po, ¢1, g2, 7 are functions of index ¢. With each of the quintuples,
let us decide to associate an “inverse image quintuple” (522(1-); Oga(i) szl(i); Oq1(i);
—0dr(iy)- The set of those will generally not constitute a Turing machine; but when it
does, we will say that MT is “reversible,” and call the new machine the inverse image
MT* of MT. The ¢, will be known as the images of €,. The substituion of ¢, for ¢, in
an instantaneous configuration Uy will be known as transformation of Uy to its image
configuration Uj. The continuations of configurations of MT* are images of those of
MT, but MT* traverses them in the opposite order. Now let us consider the machine
R (MT), whose set of quintuples is

XR(MT) = XmT U Xt U { (‘fp; Uq)halt; 5;,9 Og¢; 0},

where (£p; 0g)nay designates any state-symbol pair for which MT halts. If one starts
MT and R (MT) from the same instantaneous configuration Uy, they pass through the
same configurations as long as MT does not halt (thus possibly indefinitely). When
MT halts, R (MT) continues, traversing in the opposite order the image configurations
of the traversed configurations, and passes by the image of the initial configuration.
R (MT) will be known as the coupling of MT with its reverse image.

3. REPRESENTATION OF TURING MACHINES BY EPIMORPHISMS (OR ISOMOR-
PHISMES) OF CODES. — Let us be given an arbitrary MT. With each quintuple
having movement +1, that is to say for example (g4, 04, €5, 0%, 1), We associate three
relation elements, namely: { g0, — oxj; weon — oxaj; opfy — opey b With
(€9, 0n,€j,0k,0), we associate: {ay0, — wW;ok; WeoL — W;ok; ORPy — wjoy }. With
(&Tg,O'h,Sj,O'k,—l), we associate {QgO'h — ﬂjO’k; WgOp — ﬂjO’k; O'hﬂg — ﬂjO’k } Fi-
nally, with any symbol o, of MT, we associate o, — 0,. One can check, by the
process given in paragraph 1d, that the set of these relations defines an epimorphism
of codes. With 7, being this set, Tmax is a representation of MT, because it defines
its alphabet and quintuples. We can, in addition, find, for the instantaneous config-
urations of MT, notations such that for any pair of successive configurations u;, u;1
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we have ;11 = Tmaxt;. For that, a configuration will be composed of a succession of
symbols o (the string on the tape) into which one will intercalate one of the letters «,
w or 3, with an index p equal to that of the state €, of the machine, and indicating,
not only the position 7; of the next symbol to read, but also the position 75 of the
symbol previously written (with a particular convention for the initial configuration).
An o, signifies that 7 is the first symbol to its right, mo the first on its left. A f,,
vice-versa. An w, means that m; and m are both the first symbol to the right of the
wp. We have then achieved that u;;1 = Tpne,u;. So certain states €, can appear under
only two or one of the forms oy, wp, B,, and Tmin is obtained by removing from Tmax
all the relation elements containing the forms which never appear, so Ty is still such
that w; 11 = Tmin¥;. If Tpin is an isomorphism of codes, MT is reversible.

4. SIMULATION OF ARBITRARY MT ON REVERSIBLE MT'. APPLICATION TO
ISOMORPHISMS OF CODES. — a. Properties. — One can simulate an arbitrary
Turing machine MT (with configurations v;) on a reversible Turing machine MT,
(with configurations u, ;) so that: (1) when MT passes from v; to v;41, MT, passes
from wu; o to u;;1,0 via the intermediary of a finite number of configurations w; 1; u;2; - . .;
(2) we pass from one v; to the next via an epimorphism of codes 7, and from one
u; j to the next via an isomorphism of codes 6; (3) if the initial configurations are vy
for MT and ug for MT,, with ugo = Avouv, then for any 7, one has u; o = Av;pw;v,
where w; is a string, and where A, u, v are three symbols which appear neither in v;
nor in w;, so that knowing u, o gives v; and w;; (4) there are symbols ry of which each
one represents a relation element of 7 other than that of identity; a blank symbol
b; and for any ¢ we have w; = b’ry, 7y, - . .Tk;b, where 7y is the relation invoked by
vp = TVp_1. Thus, w; represents the history of the computation of MT until time 4;
(5) MT, halts on the u; ¢ corresponding to the halting of MT, and them only; (6) the
machine R (MT,), coupling MT, with its reverse image, starting from wyo = Avouv
passes through the image configuration Avjuv if and only if MT, starting from vy,
halts; (7) there exists for R (MT,) certain instantaneous configurations u, such that,
when started at Avopr, R(MT,) cannot reach those configurations other than by
passing through Aviuv (i.e., if MT, starting from vy, halts). One can thus arrange
that the return of of R (MT,) to Avour (or the passage through u framed by \'v/
instead of Av) is conditional on the halting of MT.

Proof. — Tt is shown how to proceed from 7, presumed to be given by a set of
relation elements { Iy ; }xek. to the set of relation elements {1, },cj, defining 6 and
MT,. We delimit the principles of this construction, by showing how to simulate
an Iy, , of the form a,04 — oyy. With this, we associate: an instruction a,o, —
Of.9.0 Ea,apa f.g.0o Where the symbol o4, marks the place where one must modify v;,
and the nature of the modification; instructions allowing control to be lead to the left
from v through a state €4qpq g0 an instruction begapgrgr — €57k, Where 7y, represents
Iy, -, supplementing w;; working instructions moving v and possibly also A, ;z and the
entire w;, to restore the necessary blanks in u;o and then defer control in oy 4, with
a state €,; an instruction o4 €, — 0oy Which supplements v; in u; .

b. THEOREM 1. — The halting problem for a general reversible Turing machine
is undecidable. Similarly for the problem of returning to the initial configuration, and



that of the passage through a given configuration other than the initial configuration.

c. THEOREM 2. — The equation w = 60™w, where 6 is an isomorphism of
codes, with n € N is recursively unsolvable in n given arbitrary w, 0. The equation
w1 = 0"wy, with wy # we, s also recursively unsolvable in n.
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